MCP Server Annotations
MCP Server Annotations 提供了一种使用 Java 注解实现 MCP 服务器功能的声明式方法。 这些注解简化了工具、资源、prompts 和 completion 处理器的创建。
Server Annotations
@McpTool
@McpTool 注解将方法标记为 MCP 工具实现,自动生成 JSON schema。
Basic Usage
@Component
public class CalculatorTools {
@McpTool(name = "add", description = "Add two numbers together")
public int add(
@McpToolParam(description = "First number", required = true) int a,
@McpToolParam(description = "Second number", required = true) int b) {
return a + b;
}
}
Advanced Features
@McpTool(name = "calculate-area",
description = "Calculate the area of a rectangle",
annotations = McpTool.McpAnnotations(
title = "Rectangle Area Calculator",
readOnlyHint = true,
destructiveHint = false,
idempotentHint = true
))
public AreaResult calculateRectangleArea(
@McpToolParam(description = "Width", required = true) double width,
@McpToolParam(description = "Height", required = true) double height) {
return new AreaResult(width * height, "square units");
}
With Request Context
工具可以访问请求上下文以进行高级操作:
@McpTool(name = "process-data", description = "Process data with request context")
public String processData(
McpSyncRequestContext context,
@McpToolParam(description = "Data to process", required = true) String data) {
// Send logging notification
context.info("Processing data: " + data);
// Send progress notification (using convenient method)
context.progress(p -> p.progress(0.5).total(1.0).message("Processing..."));
// Ping the client
context.ping();
return "Processed: " + data.toUpperCase();
}
Dynamic Schema Support
工具可以接受 CallToolRequest 进行运行时 schema 处理:
@McpTool(name = "flexible-tool", description = "Process dynamic schema")
public CallToolResult processDynamic(CallToolRequest request) {
Map<String, Object> args = request.arguments();
// Process based on runtime schema
String result = "Processed " + args.size() + " arguments dynamically";
return CallToolResult.builder()
.addTextContent(result)
.build();
}
Progress Tracking
工具可以接收进度令牌以跟踪长时间运行的操作:
@McpTool(name = "long-task", description = "Long-running task with progress")
public String performLongTask(
McpSyncRequestContext context,
@McpToolParam(description = "Task name", required = true) String taskName) {
// Access progress token from context
String progressToken = context.request().progressToken();
if (progressToken != null) {
context.progress(p -> p.progress(0.0).total(1.0).message("Starting task"));
// Perform work...
context.progress(p -> p.progress(1.0).total(1.0).message("Task completed"));
}
return "Task " + taskName + " completed";
}
@McpResource
@McpResource 注解通过 URI 模板提供资源访问。
Basic Usage
@Component
public class ResourceProvider {
@McpResource(
uri = "config://{key}",
name = "Configuration",
description = "Provides configuration data")
public String getConfig(String key) {
return configData.get(key);
}
}
With ReadResourceResult
@McpResource(
uri = "user-profile://{username}",
name = "User Profile",
description = "Provides user profile information")
public ReadResourceResult getUserProfile(String username) {
String profileData = loadUserProfile(username);
return new ReadResourceResult(List.of(
new TextResourceContents(
"user-profile://" + username,
"application/json",
profileData)
));
}
With Request Context
@McpResource(
uri = "data://{id}",
name = "Data Resource",
description = "Resource with request context")
public ReadResourceResult getData(
McpSyncRequestContext context,
String id) {
// Send logging notification using convenient method
context.info("Accessing resource: " + id);
// Ping the client
context.ping();
String data = fetchData(id);
return new ReadResourceResult(List.of(
new TextResourceContents("data://" + id, "text/plain", data)
));
}
@McpPrompt
@McpPrompt 注解为 AI 交互生成 prompt 消息。
Basic Usage
@Component
public class PromptProvider {
@McpPrompt(
name = "greeting",
description = "Generate a greeting message")
public GetPromptResult greeting(
@McpArg(name = "name", description = "User's name", required = true)
String name) {
String message = "Hello, " + name + "! How can I help you today?";
return new GetPromptResult(
"Greeting",
List.of(new PromptMessage(Role.ASSISTANT, new TextContent(message)))
);
}
}
With Optional Arguments
@McpPrompt(
name = "personalized-message",
description = "Generate a personalized message")
public GetPromptResult personalizedMessage(
@McpArg(name = "name", required = true) String name,
@McpArg(name = "age", required = false) Integer age,
@McpArg(name = "interests", required = false) String interests) {
StringBuilder message = new StringBuilder();
message.append("Hello, ").append(name).append("!\n\n");
if (age != null) {
message.append("At ").append(age).append(" years old, ");
// Add age-specific content
}
if (interests != null && !interests.isEmpty()) {
message.append("Your interest in ").append(interests);
// Add interest-specific content
}
return new GetPromptResult(
"Personalized Message",
List.of(new PromptMessage(Role.ASSISTANT, new TextContent(message.toString())))
);
}
@McpComplete
@McpComplete 注解为 prompts 提供自动完成功能。
Basic Usage
@Component
public class CompletionProvider {
@McpComplete(prompt = "city-search")
public List<String> completeCityName(String prefix) {
return cities.stream()
.filter(city -> city.toLowerCase().startsWith(prefix.toLowerCase()))
.limit(10)
.toList();
}
}
With CompleteRequest.CompleteArgument
@McpComplete(prompt = "travel-planner")
public List<String> completeTravelDestination(CompleteRequest.CompleteArgument argument) {
String prefix = argument.value().toLowerCase();
String argumentName = argument.name();
// Different completions based on argument name
if ("city".equals(argumentName)) {
return completeCities(prefix);
} else if ("country".equals(argumentName)) {
return completeCountries(prefix);
}
return List.of();
}
With CompleteResult
@McpComplete(prompt = "code-completion")
public CompleteResult completeCode(String prefix) {
List<String> completions = generateCodeCompletions(prefix);
return new CompleteResult(
new CompleteResult.CompleteCompletion(
completions,
completions.size(), // total
hasMoreCompletions // hasMore flag
)
);
}
Stateless vs Stateful Implementations
Unified Request Context (Recommended)
使用 McpSyncRequestContext 或 McpAsyncRequestContext 获得统一接口,适用于有状态和无状态操作:
public record UserInfo(String name, String email, int age) {}
@McpTool(name = "unified-tool", description = "Tool with unified request context")
public String unifiedTool(
McpSyncRequestContext context,
@McpToolParam(description = "Input", required = true) String input) {
// Access request and metadata
String progressToken = context.request().progressToken();
// Logging with convenient methods
context.info("Processing: " + input);
// Progress notifications (Note client should set a progress token
// with its request to be able to receive progress updates)
context.progress(50); // Simple percentage
// Ping client
context.ping();
// Check capabilities before using
if (context.elicitEnabled()) {
// Request user input (only in stateful mode)
StructuredElicitResult<UserInfo> elicitResult = context.elicit(UserInfo.class);
if (elicitResult.action() == ElicitResult.Action.ACCEPT) {
// Use elicited data
}
}
if (context.sampleEnabled()) {
// Request LLM sampling (only in stateful mode)
CreateMessageResult samplingResult = context.sample("Generate response");
// Use sampling result
}
return "Processed with unified context";
}
Simple Operations (No Context)
对于简单操作,可以完全省略上下文参数:
@McpTool(name = "simple-add", description = "Simple addition")
public int simpleAdd(
@McpToolParam(description = "First number", required = true) int a,
@McpToolParam(description = "Second number", required = true) int b) {
return a + b;
}
Lightweight Stateless (with McpTransportContext)
对于需要最小传输上下文的无状态操作:
@McpTool(name = "stateless-tool", description = "Stateless with transport context")
public String statelessTool(
McpTransportContext context,
@McpToolParam(description = "Input", required = true) String input) {
// Access transport-level context only
// No bidirectional operations (roots, elicitation, sampling)
return "Processed: " + input;
}
重要提示: 无状态服务器不支持双向操作:
因此,在无状态模式下使用 McpSyncRequestContext 或 McpAsyncRequestContext 的方法会被忽略。
Method Filtering by Server Type
MCP annotations 框架根据服务器类型和方法特征自动过滤带注解的方法。这确保只为每个服务器配置注册适当的方法。 每个被过滤的方法都会记录警告,以帮助调试。
Synchronous vs Asynchronous Filtering
Synchronous Servers
同步服务器(配置为 spring.ai.mcp.server.type=SYNC)使用同步提供程序,它们:
-
接受 具有非响应式返回类型的方法:
- 基本类型(
int、double、boolean) - 对象类型(
String、Integer、自定义 POJOs) - MCP 类型(
CallToolResult、ReadResourceResult、GetPromptResult、CompleteResult) - 集合(
List<String>、Map<String, Object>)
- 基本类型(
-
过滤掉 具有响应式返回类型的方法:
Mono<T>Flux<T>Publisher<T>
@Component
public class SyncTools {
@McpTool(name = "sync-tool", description = "Synchronous tool")
public String syncTool(String input) {
// This method WILL be registered on sync servers
return "Processed: " + input;
}
@McpTool(name = "async-tool", description = "Async tool")
public Mono<String> asyncTool(String input) {
// This method will be FILTERED OUT on sync servers
// A warning will be logged
return Mono.just("Processed: " + input);
}
}
Asynchronous Servers
异步服务器(配置为 spring.ai.mcp.server.type=ASYNC)使用异步提供程序,它们:
-
接受 具有响应式返回类型的方法:
Mono<T>(用于单个结果)Flux<T>(用于流式结果)Publisher<T>(通用响应式类型)
-
过滤掉 具有非响应式返回类型的方法:
- 基本类型
- 对象类型
- 集合
- MCP 结果类型
@Component
public class AsyncTools {
@McpTool(name = "async-tool", description = "Async tool")
public Mono<String> asyncTool(String input) {
// This method WILL be registered on async servers
return Mono.just("Processed: " + input);
}
@McpTool(name = "sync-tool", description = "Sync tool")
public String syncTool(String input) {
// This method will be FILTERED OUT on async servers
// A warning will be logged
return "Processed: " + input;
}
}
Stateful vs Stateless Filtering
Stateful Servers
有状态服务器支持双向通信,并接受具有以下内容的方法:
-
双向上下文参数:
McpSyncRequestContext(用于同步操作)McpAsyncRequestContext(用于异步操作)McpSyncServerExchange(遗留,用于同步操作)McpAsyncServerExchange(遗留,用于异步操作)
-
支持双向操作:
roots()- 访问根目录elicit()- 请求用户输入sample()- 请求 LLM sampling
@Component
public class StatefulTools {
@McpTool(name = "interactive-tool", description = "Tool with bidirectional operations")
public String interactiveTool(
McpSyncRequestContext context,
@McpToolParam(description = "Input", required = true) String input) {
// This method WILL be registered on stateful servers
// Can use elicitation, sampling, roots
if (context.sampleEnabled()) {
var samplingResult = context.sample("Generate response");
// Process sampling result...
}
return "Processed with context";
}
}
Stateless Servers
无状态服务器针对简单的请求-响应模式进行了优化,并且:
-
过滤掉 具有双向上下文参数的方法:
- 具有
McpSyncRequestContext的方法会被跳过 - 具有
McpAsyncRequestContext的方法会被跳过 - 具有
McpSyncServerExchange的方法会被跳过 - 具有
McpAsyncServerExchange的方法会被跳过 - 每个被过滤的方法都会记录警告
- 具有
-
接受 具有以下内容的方法:
McpTransportContext(轻量级无状态上下文)- 完全没有上下文参数
- 只有常规的
@McpToolParam参数
-
不支持 双向操作:
roots()- 不可用elicit()- 不可用sample()- 不可用
@Component
public class StatelessTools {
@McpTool(name = "simple-tool", description = "Simple stateless tool")
public String simpleTool(@McpToolParam(description = "Input") String input) {
// This method WILL be registered on stateless servers
return "Processed: " + input;
}
@McpTool(name = "context-tool", description = "Tool with transport context")
public String contextTool(
McpTransportContext context,
@McpToolParam(description = "Input") String input) {
// This method WILL be registered on stateless servers
return "Processed: " + input;
}
@McpTool(name = "bidirectional-tool", description = "Tool with bidirectional context")
public String bidirectionalTool(
McpSyncRequestContext context,
@McpToolParam(description = "Input") String input) {
// This method will be FILTERED OUT on stateless servers
// A warning will be logged
return "Processed with sampling";
}
}
Filtering Summary
| Server Type | Accepted Methods | Filtered Methods |
|---|---|---|
| Sync Stateful | Non-reactive returns + bidirectional context | Reactive returns (Mono/Flux) |
| Async Stateful | Reactive returns (Mono/Flux) + bidirectional context | Non-reactive returns |
| Sync Stateless | Non-reactive returns + no bidirectional context | Reactive returns OR bidirectional context parameters |
| Async Stateless | Reactive returns (Mono/Flux) + no bidirectional context | Non-reactive returns OR bidirectional context parameters |
提示: 方法过滤的最佳实践:
- 保持方法与服务器类型一致 - 同步服务器使用同步方法,异步服务器使用异步方法
- 将有状态和无状态实现分离到不同的类中以提高清晰度
- 检查启动时的日志以查看被过滤方法的警告
- 使用正确的上下文 - 有状态使用
McpSyncRequestContext/McpAsyncRequestContext,无状态使用McpTransportContext - 测试两种模式(如果您同时支持有状态和无状态部署)
Async Support
所有服务器注解都支持使用 Reactor 的异步实现:
@Component
public class AsyncTools {
@McpTool(name = "async-fetch", description = "Fetch data asynchronously")
public Mono<String> asyncFetch(
@McpToolParam(description = "URL", required = true) String url) {
return Mono.fromCallable(() -> {
// Simulate async operation
return fetchFromUrl(url);
}).subscribeOn(Schedulers.boundedElastic());
}
@McpResource(uri = "async-data://{id}", name = "Async Data")
public Mono<ReadResourceResult> asyncResource(String id) {
return Mono.fromCallable(() -> {
String data = loadData(id);
return new ReadResourceResult(List.of(
new TextResourceContents("async-data://" + id, "text/plain", data)
));
}).delayElements(Duration.ofMillis(100));
}
}
Spring Boot Integration
通过 Spring Boot 自动配置,带注解的 beans 会自动检测并注册:
@SpringBootApplication
public class McpServerApplication {
public static void main(String[] args) {
SpringApplication.run(McpServerApplication.class, args);
}
}
@Component
public class MyMcpTools {
// Your @McpTool annotated methods
}
@Component
public class MyMcpResources {
// Your @McpResource annotated methods
}
自动配置将:
- 扫描带有 MCP 注解的 beans
- 创建适当的规范
- 将它们注册到 MCP 服务器
- 根据配置处理同步和异步实现
Configuration Properties
配置服务器注解扫描器:
spring:
ai:
mcp:
server:
type: SYNC # or ASYNC
annotation-scanner:
enabled: true