Human Feedback
Human Feedback Recovery Case
In real business scenarios, human intervention is often encountered. Different human operations will affect different workflow paths.
The following implements a simple case that includes three nodes: expansion node, human node, and translation node.
- Expansion node: AI model streams the expansion output based on the question
- Human node: Decides whether to end directly or continue to execute the translation node based on user feedback
- Translation node: Translates the question into English
The practical code can be found at: spring-ai-alibaba-examples under the graph directory. This chapter’s code is in the human-node module.
pom.xml
Here we use version 1.0.0.3-SNAPSHOT. There are some changes in StateGraph definition compared to 1.0.0.2
<properties> <spring-ai-alibaba.version>1.0.0.3-SNAPSHOT</spring-ai-alibaba.version></properties>
<dependencies>
<dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-autoconfigure-model-openai</artifactId> </dependency>
<dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-autoconfigure-model-chat-client</artifactId> </dependency>
<dependency> <groupId>com.alibaba.cloud.ai</groupId> <artifactId>spring-ai-alibaba-graph-core</artifactId> <version>${spring-ai-alibaba.version}</version> </dependency>
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency></dependencies>
application.yml
server: port: 8080spring: application: name: human-node ai: openai: api-key: ${AIDASHSCOPEAPIKEY} base-url: https://dashscope.aliyuncs.com/compatible-mode chat: options: model: qwen-max
config
Fields stored in OverAllState:
- query: user’s question
- expandernumber: number of expansions
- expandercontent: expansion content
- feedback: human feedback content
- humannextnode: next node after human feedback
- translatelanguage: target language for translation, default is English
- translatecontent: translated content
Define ExpanderNode, with edges connecting:
START -> expander -> humanfeedbackhumanfeedback -> translatehumanfeedback -> ENDtranslate -> END
package com.spring.ai.tutorial.graph.human.config;
import com.alibaba.cloud.ai.graph.GraphRepresentation;import com.alibaba.cloud.ai.graph.KeyStrategy;import com.alibaba.cloud.ai.graph.KeyStrategyFactory;import com.alibaba.cloud.ai.graph.StateGraph;import com.alibaba.cloud.ai.graph.action.AsyncEdgeAction;import com.alibaba.cloud.ai.graph.exception.GraphStateException;import com.alibaba.cloud.ai.graph.state.strategy.ReplaceStrategy;import com.spring.ai.tutorial.graph.human.dispatcher.HumanFeedbackDispatcher;import com.spring.ai.tutorial.graph.human.node.ExpanderNode;import com.spring.ai.tutorial.graph.human.node.HumanFeedbackNode;import com.spring.ai.tutorial.graph.human.node.TranslateNode;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.ai.chat.client.ChatClient;import org.springframework.context.annotation.Bean;import org.springframework.context.annotation.Configuration;
import java.util.HashMap;import java.util.Map;
import static com.alibaba.cloud.ai.graph.action.AsyncNodeAction.nodeasync;
/** * @author yingzi * @since 2025/6/13 */@Configurationpublic class GraphHumanConfiguration {
private static final Logger logger = LoggerFactory.getLogger(GraphHumanConfiguration.class);
@Bean public StateGraph humanGraph(ChatClient.Builder chatClientBuilder) throws GraphStateException { KeyStrategyFactory keyStrategyFactory = () -> { HashMap<String, KeyStrategy> keyStrategyHashMap = new HashMap<>(); // User input keyStrategyHashMap.put("query", new ReplaceStrategy()); keyStrategyHashMap.put("threadid", new ReplaceStrategy());
keyStrategyHashMap.put("expandernumber", new ReplaceStrategy()); keyStrategyHashMap.put("expandercontent", new ReplaceStrategy());
// Human feedback keyStrategyHashMap.put("feedback", new ReplaceStrategy()); keyStrategyHashMap.put("humannextnode", new ReplaceStrategy());
// Whether translation is needed keyStrategyHashMap.put("translatelanguage", new ReplaceStrategy()); keyStrategyHashMap.put("translatecontent", new ReplaceStrategy()); return keyStrategyHashMap; };
StateGraph stateGraph = new StateGraph(keyStrategyFactory) .addNode("expander", nodeasync(new ExpanderNode(chatClientBuilder))) .addNode("translate", nodeasync(new TranslateNode(chatClientBuilder))) .addNode("humanfeedback", nodeasync(new HumanFeedbackNode()))
.addEdge(StateGraph.START, "expander") .addEdge("expander", "humanfeedback") .addConditionalEdges("humanfeedback", AsyncEdgeAction.edgeasync((new HumanFeedbackDispatcher())), Map.of( "translate", "translate", StateGraph.END, StateGraph.END)) .addEdge("translate", StateGraph.END);
// Add PlantUML printing GraphRepresentation representation = stateGraph.getGraph(GraphRepresentation.Type.PLANTUML, "human flow"); logger.info("\n=== expander UML Flow ==="); logger.info(representation.content()); logger.info("==================================\n");
return stateGraph; }}
node
ExpanderNode
package com.spring.ai.tutorial.graph.human.node;
import com.alibaba.cloud.ai.graph.NodeOutput;import com.alibaba.cloud.ai.graph.OverAllState;import com.alibaba.cloud.ai.graph.action.NodeAction;import com.alibaba.cloud.ai.graph.async.AsyncGenerator;import com.alibaba.cloud.ai.graph.streaming.StreamingChatGenerator;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.ai.chat.client.ChatClient;import org.springframework.ai.chat.model.ChatResponse;import org.springframework.ai.chat.prompt.PromptTemplate;import reactor.core.publisher.Flux;
import java.util.Arrays;import java.util.HashMap;import java.util.List;import java.util.Map;
/** * @author yingzi * @since 2025/6/13 */
public class ExpanderNode implements NodeAction {
private static final Logger logger = LoggerFactory.getLogger(ExpanderNode.class);
private static final PromptTemplate DEFAULTPROMPTTEMPLATE = new PromptTemplate("You are an expert at information retrieval and search optimization.\nYour task is to generate {number} different versions of the given query.\n\nEach variant must cover different perspectives or aspects of the topic,\nwhile maintaining the core intent of the original query. The goal is to\nexpand the search space and improve the chances of finding relevant information.\n\nDo not explain your choices or add any other text.\nProvide the query variants separated by newlines.\n\nOriginal query: {query}\n\nQuery variants:\n");
private final ChatClient chatClient;
private final Integer NUMBER = 3;
public ExpanderNode(ChatClient.Builder chatClientBuilder) { this.chatClient = chatClientBuilder.build(); }
@Override public Map<String, Object> apply(OverAllState state) { logger.info("expander node is running.");
String query = state.value("query", ""); Integer expanderNumber = state.value("expandernumber", this.NUMBER);
Flux<ChatResponse> chatResponseFlux = this.chatClient.prompt().user((user) -> user.text(DEFAULTPROMPTTEMPLATE.getTemplate()).param("number", expanderNumber).param("query", query)).stream().chatResponse();
AsyncGenerator<? extends NodeOutput> generator = StreamingChatGenerator.builder() .startingNode("expanderllmstream") .startingState(state) .mapResult(response -> { String text = response.getResult().getOutput().getText(); List<String> queryVariants = Arrays.asList(text.split("\n")); return Map.of("expandercontent", queryVariants); }).build(chatResponseFlux); return Map.of("expandercontent", generator); }
}
HumanFeedbackNode
package com.spring.ai.tutorial.graph.human.node;
import com.alibaba.cloud.ai.graph.OverAllState;import com.alibaba.cloud.ai.graph.StateGraph;import com.alibaba.cloud.ai.graph.action.NodeAction;import org.slf4j.Logger;import org.slf4j.LoggerFactory;
import java.util.HashMap;import java.util.Map;
/** * @author yingzi * @since 2025/6/19 */
public class HumanFeedbackNode implements NodeAction {
private static final Logger logger = LoggerFactory.getLogger(HumanFeedbackNode.class);
@Override public Map<String, Object> apply(OverAllState state) { logger.info("humanfeedback node is running."); HashMap<String, Object> resultMap = new HashMap<>(); String nextStep = StateGraph.END;
Map<String, Object> feedBackData = state.humanFeedback().data(); boolean feedback = (boolean) feedBackData.getOrDefault("feedback", true); if (feedback) { nextStep = "translate"; }
resultMap.put("humannextnode", nextStep); logger.info("humanfeedback node -> {} node", nextStep); return resultMap; }}
TranslateNode
package com.spring.ai.tutorial.graph.human.node;
import com.alibaba.cloud.ai.graph.NodeOutput;import com.alibaba.cloud.ai.graph.OverAllState;import com.alibaba.cloud.ai.graph.action.NodeAction;import com.alibaba.cloud.ai.graph.async.AsyncGenerator;import com.alibaba.cloud.ai.graph.streaming.StreamingChatGenerator;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.ai.chat.client.ChatClient;import org.springframework.ai.chat.model.ChatResponse;import org.springframework.ai.chat.prompt.PromptTemplate;import reactor.core.publisher.Flux;
import java.util.Arrays;import java.util.HashMap;import java.util.List;import java.util.Map;
/** * @author yingzi * @since 2025/6/13 */
public class TranslateNode implements NodeAction {
private static final Logger logger = LoggerFactory.getLogger(ExpanderNode.class);
private static final PromptTemplate DEFAULTPROMPTTEMPLATE = new PromptTemplate("Given a user query, translate it to {targetLanguage}.\nIf the query is already in {targetLanguage}, return it unchanged.\nIf you don't know the language of the query, return it unchanged.\nDo not add explanations nor any other text.\n\nOriginal query: {query}\n\nTranslated query:\n");
private final ChatClient chatClient;
private final String TARGETLANGUAGE= "English";
public TranslateNode(ChatClient.Builder chatClientBuilder) { this.chatClient = chatClientBuilder.build(); }
@Override public Map<String, Object> apply(OverAllState state) { logger.info("translate node is running.");
String query = state.value("query", ""); String targetLanguage = state.value("translatelanguage", TARGETLANGUAGE);
Flux<ChatResponse> chatResponseFlux = this.chatClient.prompt().user((user) -> user.text(DEFAULTPROMPTTEMPLATE.getTemplate()).param("targetLanguage", targetLanguage).param("query", query)).stream().chatResponse(); AsyncGenerator<? extends NodeOutput> generator = StreamingChatGenerator.builder() .startingNode("translatellmstream") .startingState(state) .mapResult(response -> { String text = response.getResult().getOutput().getText(); List<String> queryVariants = Arrays.asList(text.split("\n")); return Map.of("translatecontent", queryVariants); }).build(chatResponseFlux); return Map.of("translatecontent", generator); }}
edge
The next edge of the human node is a conditional edge, controlled by HumanFeedbackDispatcher to determine which node to jump to next
package com.spring.ai.tutorial.graph.human.dispatcher;
import com.alibaba.cloud.ai.graph.OverAllState;import com.alibaba.cloud.ai.graph.StateGraph;import com.alibaba.cloud.ai.graph.action.EdgeAction;
/** * @author yingzi * @since 2025/6/19 */
public class HumanFeedbackDispatcher implements EdgeAction { @Override public String apply(OverAllState state) throws Exception { return (String) state.value("humannextnode", StateGraph.END); }}
controller
GraphHumanController
- CompileConfig.builder().saverConfig(saverConfig).interruptBefore(“humanfeedback”): Interrupts the flow before the human feedback node
- Sinks.Many<ServerSentEvent
> sink: Receives Stream data
package com.spring.ai.tutorial.graph.human.controller;
import com.alibaba.cloud.ai.graph.CompileConfig;import com.alibaba.cloud.ai.graph.CompiledGraph;import com.alibaba.cloud.ai.graph.NodeOutput;import com.alibaba.cloud.ai.graph.OverAllState;import com.alibaba.cloud.ai.graph.RunnableConfig;import com.alibaba.cloud.ai.graph.StateGraph;import com.alibaba.cloud.ai.graph.async.AsyncGenerator;import com.alibaba.cloud.ai.graph.checkpoint.config.SaverConfig;import com.alibaba.cloud.ai.graph.checkpoint.constant.SaverConstant;import com.alibaba.cloud.ai.graph.checkpoint.savers.MemorySaver;import com.alibaba.cloud.ai.graph.exception.GraphRunnerException;import com.alibaba.cloud.ai.graph.exception.GraphStateException;import com.alibaba.cloud.ai.graph.state.StateSnapshot;import com.spring.ai.tutorial.graph.human.controller.GraphProcess.GraphProcess;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.beans.factory.annotation.Qualifier;import org.springframework.http.MediaType;import org.springframework.http.codec.ServerSentEvent;import org.springframework.web.bind.annotation.GetMapping;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.RequestParam;import org.springframework.web.bind.annotation.RestController;import reactor.core.publisher.Flux;import reactor.core.publisher.Sinks;
import java.util.HashMap;import java.util.Map;
/** * @author yingzi * @since 2025/6/13 */@RestController@RequestMapping("/graph/human")public class GraphHumanController {
private static final Logger logger = LoggerFactory.getLogger(GraphHumanController.class);
private final CompiledGraph compiledGraph;
@Autowired public GraphHumanController(@Qualifier("humanGraph") StateGraph stateGraph) throws GraphStateException { SaverConfig saverConfig = SaverConfig.builder().register(SaverConstant.MEMORY, new MemorySaver()).build(); this.compiledGraph = stateGraph .compile(CompileConfig.builder().saverConfig(saverConfig).interruptBefore("humanfeedback").build()); }
@GetMapping(value = "/expand", produces = MediaType.TEXTEVENTSTREAMVALUE) public Flux<ServerSentEvent<String>> expand(@RequestParam(value = "query", defaultValue = "你好,很高兴认识你,能简单介绍一下自己吗?", required = false) String query, @RequestParam(value = "expandernumber", defaultValue = "3", required = false) Integer expanderNumber, @RequestParam(value = "threadid", defaultValue = "yingzi", required = false) String threadId) throws GraphRunnerException { RunnableConfig runnableConfig = RunnableConfig.builder().threadId(threadId).build(); Map<String, Object> objectMap = new HashMap<>(); objectMap.put("query", query); objectMap.put("expandernumber", expanderNumber);
GraphProcess graphProcess = new GraphProcess(this.compiledGraph); Sinks.Many<ServerSentEvent<String>> sink = Sinks.many().unicast().onBackpressureBuffer(); AsyncGenerator<NodeOutput> resultFuture = compiledGraph.stream(objectMap, runnableConfig); graphProcess.processStream(resultFuture, sink);
return sink.asFlux() .doOnCancel(() -> logger.info("Client disconnected from stream")) .doOnError(e -> logger.error("Error occurred during streaming", e)); }
@GetMapping(value = "/resume", produces = MediaType.TEXTEVENTSTREAMVALUE) public Flux<ServerSentEvent<String>> resume(@RequestParam(value = "threadid", defaultValue = "yingzi", required = false) String threadId, @RequestParam(value = "feedback", defaultValue = "true", required = false) boolean feedBack) throws GraphRunnerException { RunnableConfig runnableConfig = RunnableConfig.builder().threadId(threadId).build(); StateSnapshot stateSnapshot = this.compiledGraph.getState(runnableConfig); OverAllState state = stateSnapshot.state(); state.withResume();
Map<String, Object> objectMap = new HashMap<>(); objectMap.put("feedback", feedBack);
state.withHumanFeedback(new OverAllState.HumanFeedback(objectMap, ""));
// Create a unicast sink to emit ServerSentEvents Sinks.Many<ServerSentEvent<String>> sink = Sinks.many().unicast().onBackpressureBuffer(); GraphProcess graphProcess = new GraphProcess(this.compiledGraph); AsyncGenerator<NodeOutput> resultFuture = compiledGraph.streamFromInitialNode(state, runnableConfig); graphProcess.processStream(resultFuture, sink);
return sink.asFlux() .doOnCancel(() -> logger.info("Client disconnected from stream")) .doOnError(e -> logger.error("Error occurred during streaming", e)); }}
GraphProcess
- ExecutorService executor: Configure thread pool to get stream flow
Write the results to the sink
package com.spring.ai.tutorial.graph.stream.controller.GraphProcess;
import com.alibaba.cloud.ai.graph.CompiledGraph;import com.alibaba.cloud.ai.graph.NodeOutput;import com.alibaba.cloud.ai.graph.streaming.StreamingOutput;import com.alibaba.fastjson.JSON;import com.alibaba.fastjson.JSONObject;import org.bsc.async.AsyncGenerator;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.http.codec.ServerSentEvent;import reactor.core.publisher.Sinks;
import java.util.Map;import java.util.concurrent.CompletionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;
public class GraphProcess {
private static final Logger logger = LoggerFactory.getLogger(GraphProcess.class);
private final ExecutorService executor = Executors.newSingleThreadExecutor();
private CompiledGraph compiledGraph;
public GraphProcess(CompiledGraph compiledGraph) { this.compiledGraph = compiledGraph; }
public void processStream(AsyncGenerator<NodeOutput> generator, Sinks.Many<ServerSentEvent<String>> sink) { executor.submit(() -> { generator.forEachAsync(output -> { try { logger.info("output = {}", output); String nodeName = output.node(); String content; if (output instanceof StreamingOutput streamingOutput) { content = JSON.toJSONString(Map.of(nodeName, streamingOutput.chunk())); } else { JSONObject nodeOutput = new JSONObject(); nodeOutput.put("data", output.state().data()); nodeOutput.put("node", nodeName); content = JSON.toJSONString(nodeOutput); } sink.tryEmitNext(ServerSentEvent.builder(content).build()); } catch (Exception e) { throw new CompletionException(e); } }).thenAccept(v -> { // Normal completion sink.tryEmitComplete(); }).exceptionally(e -> { sink.tryEmitError(e); return null; }); }); }}
Effect
Call the expand interface, stream output && interrupt flow to get final result
Then call the resume interface, restore state to continue the flow and handle subsequent logic