跳转到内容
AI 原生实战营,为您带来最全面的 AI 应用开发经验分享 | 2024年12月26日上海点此了解

Chat Client

ChatClient 简介

ChatClient 提供了与 AI 模型通信的 Fluent API,它支持同步和反应式(Reactive)编程模型。与 ChatModelMessageChatMemory 等原子 API 相比,使用 ChatClient 可以将与 LLM 及其他组件交互的复杂性隐藏在背后,因为基于 LLM 的应用程序通常要多个组件协同工作(例如,提示词模板、聊天记忆、LLM Model、输出解析器、RAG 组件:嵌入模型和存储),并且通常涉及多个交互,因此协调它们会让编码变得繁琐。当然使用 ChatModel 等原子 API 可以为应用程序带来更多的灵活性,成本就是您需要编写大量样板代码。

ChatClient 类似于应用程序开发中的服务层,它为应用程序直接提供 AI 服务,开发者可以使用 ChatClient Fluent API 快速完成一整套 AI 交互流程的组装。

包括一些基础功能,如:

  • 定制和组装模型的输入(Prompt)
  • 格式化解析模型的输出(Structured Output)
  • 调整模型交互参数(ChatOptions)

还支持更多高级功能:

  • 聊天记忆(Chat Memory)
  • 工具/函数调用(Function Calling)
  • RAG

创建 ChatClient

使用 ChatClient.Builder 对象创建 ChatClient 实例,您可以自动注入由Spring Boot 自动配置创建的默认 ChatClient.Builder 实例,您也可以通过编程方式自行创建一个 ChatClient.Builder 实例并用它来得到 ChatClient 实例。

使用自动配置的 ChatClient.Builder

在快速开始示例中,就是使用的 Spring Boot 自动装配默认生成的 ChatClient.Builder 的 bean,把它注入到您自己的类中。这里是根据用户提问并从模型得到文本回答的简单例子:

@RestController
public class ChatController {
private final ChatClient chatClient;
public ChatController(ChatClient.Builder builder) {
this.chatClient = builder.build();
}
@GetMapping("/chat")
public String chat(String input) {
return this.chatClient.prompt()
.user(input)
.call()
.content();
}
}

在这个示例中,首先设置了用户消息的内容,call 方法向 AI 模型发送请求,content 方法以字符串形式返回 AI 模型的响应。

以编程方式创建 ChatClient

您可以通过设置属性 spring.ai.chat.client.enabled=false 来禁用 ChatClient.Builder bean 的自动配置,如果需要多个聊天模型一起使用,这会很有用,然后以编程方式创建 ChatClient.Builder,这样可以为每个聊天模型创建一个实例 ChatModel

ChatModel myChatModel = ... // usually autowired
ChatClient.Builder builder = ChatClient.builder(myChatModel);
// or create a ChatClient with the default builder settings:
ChatClient chatClient = ChatClient.create(myChatModel);

处理 ChatClient 响应

ChatClient API 提供了多种方法来格式化来自 AI 模型的响应。

返回 ChatResponse

AI 模型的响应是一种由ChatResponse类型定义的丰富结构。它包含响应生成相关的元数据,同时它还可以包含多个子响应(称为Generation),每个子响应都有自己的元数据。元数据包括用于创建响应的令牌(token)数量信息(在英文中,每个令牌大约为一个单词的 3/4),了解令牌信息很重要,因为 AI 模型根据每个请求使用的令牌数量收费。

下面的代码段显示了通过调用 chatResponse() 返回 ChatResponse 的示例,相比于调用 content() 方法,这里在调用 call() 方法之后调用 chatResponse()

ChatResponse chatResponse = chatClient.prompt()
.user("Tell me a joke")
.call()
.chatResponse();

返回实体类(Entity)

您经常希望返回一个预先定义好的实体类型响应,Spring AI 框架可以自动替我们完成从 String 到实体类的转换,调用entity() 方法可完成响应数据转换。

例如,给定 Java record(POJO)定义:

record ActorFilms(String actor, List<String> movies) {
}

您可以使用该 entity 方法轻松地将 AI 模型的输出映射到 ActorFilms 类型,如下所示:

ActorFilms actorFilms = chatClient.prompt()
.user("Generate the filmography for a random actor.")
.call()
.entity(ActorFilms.class);

entity 还有一种带有参数的重载方法 entity(ParameterizedTypeReference<T> type),可让您指定如泛型 List 等类型:

List<ActorFilms> actorFilms = chatClient.prompt()
.user("Generate the filmography of 5 movies for Tom Hanks and Bill Murray.")
.call()
.entity(new ParameterizedTypeReference<List<ActorFilms>>() {
});

流式响应

stream 方法是一种异步的、持续的获得模型响应的方式:

Flux<String> output = chatClient.prompt()
.user("Tell me a joke")
.stream()
.content();

相比于上面的 Flux<String>,您还可以使用 Flux<ChatResponse> chatResponse() 方法获得 ChatResponse 响应数据流。

call() 返回值

ChatClient.call() 方法支持几种不同类型的响应格式。

  • String content():返回响应的字符串内容
  • ChatResponse chatResponse():返回ChatResponse包含多个代以及有关响应的元数据的对象,例如,使用了多少个令牌来创建响应。
  • entity 返回 Java 类型
    • entity(ParameterizedTypeReference type):用于返回实体类型的集合。
    • entity(Class type): 用于返回特定的实体类型。
    • entity(StructuredOutputConverter structuredOutputConverter): 用于指定一个实例 StructuredOutputConverter,将 String 转换为实体类型。

stream() 返回值

您还可以调用该stream方法而call不是,在指定stream方法后ChatClient,响应类型有几个选项:

  • Flux<String> content():返回由AI模型生成的字符串的Flux。
  • Flux<ChatResponse> chatResponse():返回对象的 Flux ChatResponse,其中包含有关响应的附加元数据。

定制 ChatClient 默认值

在前面 ChatClient 的初步体验中,我们使用 ChatClient.Builder.build() 快速创建了一个 ChatClient 实例,开发者还可以通过修改 ChatClient.Builder 定制 ChatClient 实例

注意,创建 ChatClient 时指定的配置将作为与模型交互时的默认参数,这样可以避免每次调用都重复设置

设置默认 System Message

在以下示例中,我们为 ChatClient 设置了一个默认的 system message(以海盗风格回答所有问题),这样,当 ChatClient 与模型交互时都会自动携带这条 system message,用户只需要指定 user message 即可。

@Configuration
class Config {
@Bean
ChatClient chatClient(ChatClient.Builder builder) {
return builder.defaultSystem("You are a friendly chat bot that answers question in the voice of a Pirate")
.build();
}
}

在 Controller 中使用这个 ChatClient

@RestController
class AIController {
private final ChatClient chatClient;
AIController(ChatClient chatClient) {
this.chatClient = chatClient;
}
@GetMapping("/ai/simple")
public Map<String, String> completion(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
return Map.of("completion", chatClient.prompt().user(message).call().content());
}
}

启动示例,通过 curl 测试效果:

Terminal window
> curl localhost:8080/ai/simple
{"generation":"Why did the pirate go to the comedy club? To hear some arrr-rated jokes! Arrr, matey!"}

在上面 builder.defaultSystem() 创建 ChatClient 的时,我们还可以选择使用模板,类似 “You are a friendly chat bot that answers question in the voice of a {voice}“,这让我们有机会在每次调用前修改请求参数。

@Configuration
class Config {
@Bean
ChatClient chatClient(ChatClient.Builder builder) {
return builder.defaultSystem("You are a friendly chat bot that answers question in the voice of a {voice}")
.build();
}
}
@RestController
class AIController {
private final ChatClient chatClient
AIController(ChatClient chatClient) {
this.chatClient = chatClient;
}
@GetMapping("/ai")
Map<String, String> completion(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message, String voice) {
return Map.of(
"completion",
chatClient.prompt()
.system(sp -> sp.param("voice", voice))
.user(message)
.call()
.content());
}
}

答案是

Terminal window
http localhost:8080/ai voice=='Robert DeNiro'
{
"completion": "You talkin' to me? Okay, here's a joke for ya: Why couldn't the bicycle stand up by itself? Because it was two tired! Classic, right?"
}

其他默认设置

除了 defaultSystem 之外,您还可以在 ChatClient.Builder 级别上指定其他默认提示。

  • defaultOptions(ChatOptions chatOptions):传入 ChatOptions 类中定义的可移植选项或特定于模型实现的如 DashScopeChatOptions 选项。有关特定于模型的ChatOptions实现的更多信息,请参阅 JavaDocs。

  • defaultFunction(String name, String description, java.util.function.Function<I, O> function)name 用于在用户文本中引用该函数,description解释该函数的用途并帮助 AI 模型选择正确的函数以获得准确的响应,参数 function 是模型将在必要时执行的 Java 函数实例。

  • defaultFunctions(String... functionNames):应用程序上下文中定义的 java.util.Function 的 bean 名称。

  • defaultUser(String text)defaultUser(Resource text)defaultUser(Consumer<UserSpec> userSpecConsumer) 这些方法允许您定义用户消息输入,Consumer<UserSpec>允许您使用 lambda 指定用户消息输入和任何默认参数。

  • defaultAdvisors(RequestResponseAdvisor... advisor):Advisors 允许修改用于创建 Prompt 的数据,QuestionAnswerAdvisor 实现通过在 Prompt 中附加与用户文本相关的上下文信息来实现 Retrieval Augmented Generation 模式。

  • defaultAdvisors(Consumer<AdvisorSpec> advisorSpecConsumer):此方法允许您定义一个 Consumer 并使用 AdvisorSpec 配置多个 Advisor,Advisor 可以修改用于创建 Prompt 的最终数据,Consumer<AdvisorSpec> 允许您指定 lambda 来添加 Advisor 例如 QuestionAnswerAdvisor

您可以在运行时使用 ChatClient 提供的不带 default 前缀的相应方法覆盖这些默认值。

  • options(ChatOptions chatOptions)

  • function(String name, String description, java.util.function.Function<I, O> function)

  • functions(String... functionNames)

  • user(String text)user(Resource text)user(Consumer<UserSpec> userSpecConsumer)

  • advisors(RequestResponseAdvisor... advisor)

  • advisors(Consumer<AdvisorSpec> advisorSpecConsumer)

Advisors

在使用用户输入文本构建 Prompt 调用 AI 模型时,一个常见模式是使用上下文数据附加或扩充 Prompt,最终使用扩充后的 Prompt 与模型交互。

这些用于扩充 Prompt 的上下文数据可以是不同类型的,常见类型包括:

  • 您自己的数据:这是 AI 模型尚未训练过的数据,如特定领域知识、产品文档等,即使模型已经看到过类似的数据,附加的上下文数据也会优先生成响应。
  • 对话历史记录:聊天模型的 API 是无状态的,如果您告诉 AI 模型您的姓名,它不会在后续交互中记住它,每次请求都必须发送对话历史记录,以确保在生成响应时考虑到先前的交互。

检索增强生成(RAG)

向量数据库存储的是 AI 模型不知道的数据,当用户问题被发送到 AI 模型时,QuestionAnswerAdvisor 会在向量数据库中查询与用户问题相关的文档。

来自向量数据库的响应被附加到用户消息 Prompt 中,为 AI 模型生成响应提供上下文。

假设您已将数据加载到中 VectorStore,则可以通过向 ChatClient 提供 QuestionAnswerAdvisor 实例来执行检索增强生成 (RAG ) 。

ChatResponse response = ChatClient.builder(chatModel)
.build().prompt()
.advisors(new QuestionAnswerAdvisor(vectorStore, SearchRequest.defaults()))
.user(userText)
.call()
.chatResponse();

在此示例中,SearchRequest.defaults() 将对 Vector 向量数据库中的所有文档执行相似性搜索。为了限制要搜索的文档类型,SearchRequest 采用了可移植到任意向量数据库中的类似 SQL 筛选表达式。

动态过滤表达式

SearchRequest 使用 FILTER_EXPRESSION Advisor 上下文参数在运行时更新过滤表达式:

ChatClient chatClient = ChatClient.builder(chatModel)
.defaultAdvisors(new QuestionAnswerAdvisor(vectorStore, SearchRequest.defaults()))
.build();
// Update filter expression at runtime
String content = chatClient.prompt()
.user("Please answer my question XYZ")
.advisors(a -> a.param(QuestionAnswerAdvisor.FILTER_EXPRESSION, "type == 'Spring'"))
.call()
.content();

FILTER_EXPRESSION 参数允许您根据提供的表达式动态过滤搜索结果。

聊天记忆

ChatMemory 接口表示聊天对话历史记录的存储,它提供向对话添加消息、从对话中检索消息以及清除对话历史记录的方法。

目前提供两种实现方式 InMemoryChatMemoryCassandraChatMemory,分别为聊天对话历史记录提供内存存储和 time-to-live 类型的持久存储。

创建一个包含 time-to-live 配置的 CassandraChatMemory

CassandraChatMemory.create(CassandraChatMemoryConfig.builder().withTimeToLive(Duration.ofDays(1)).build());

以下 Advisor 实现使用 ChatMemory 接口来使用对话历史记录来增强(advice)Prompt,这些 advisor 实现在如何将对话历史记录添加到 Prompt 的细节上有所不同。

  • MessageChatMemoryAdvisor:内存被检索并作为消息集合添加到提示中
  • PromptChatMemoryAdvisor:检索内存并将其添加到提示的系统文本中。
  • VectorStoreChatMemoryAdvisor :构造函数VectorStoreChatMemoryAdvisor(VectorStore vectorStore, String defaultConversationId, int chatHistoryWindowSize)允许您指定要从中检索聊天历史记录的 VectorStore、唯一的对话 ID、要检索的聊天历史记录的大小(以令牌大小为单位)。

下面的 @Service 提供了一个使用多个 Advisor 的示例实现:

import static org.springframework.ai.chat.client.advisor.AbstractChatMemoryAdvisor.CHAT_MEMORY_CONVERSATION_ID_KEY;
import static org.springframework.ai.chat.client.advisor.AbstractChatMemoryAdvisor.CHAT_MEMORY_RETRIEVE_SIZE_KEY;
@Service
public class CustomerSupportAssistant {
private final ChatClient chatClient;
public CustomerSupportAssistant(ChatClient.Builder builder, VectorStore vectorStore, ChatMemory chatMemory) {
this.chatClient = builder
.defaultSystem("""
You are a customer chat support agent of an airline named "Funnair".", Respond in a friendly,
helpful, and joyful manner.
Before providing information about a booking or cancelling a booking, you MUST always
get the following information from the user: booking number, customer first name and last name.
Before changing a booking you MUST ensure it is permitted by the terms.
If there is a charge for the change, you MUST ask the user to consent before proceeding.
""")
.defaultAdvisors(
new PromptChatMemoryAdvisor(chatMemory),
// new MessageChatMemoryAdvisor(chatMemory), // CHAT MEMORY
new QuestionAnswerAdvisor(vectorStore, SearchRequest.defaults()),
new LoggingAdvisor()) // RAG
.defaultFunctions("getBookingDetails", "changeBooking", "cancelBooking") // FUNCTION CALLING
.build();
}
public Flux<String> chat(String chatId, String userMessageContent) {
return this.chatClient.prompt()
.user(userMessageContent)
.advisors(a -> a
.param(CHAT_MEMORY_CONVERSATION_ID_KEY, chatId)
.param(CHAT_MEMORY_RETRIEVE_SIZE_KEY, 100))
.stream().content();
}
}

日志记录

SimpleLoggerAdvisor 是一个用于记录 ChatClient 的 requestresponse 数据 Advisor,这对于调试和监控您的 AI 交互非常有用。

要启用日志记录,请在创建 ChatClient 时将 SimpleLoggerAdvisor 添加到 Advisor 链中。建议将其添加到链的末尾:

ChatResponse response = ChatClient.create(chatModel).prompt()
.advisors(new SimpleLoggerAdvisor())
.user("Tell me a joke?")
.call()
.chatResponse();

要查看日志,请将 Advisor 包的日志记录级别设置为 DEBUG

org.springframework.ai.chat.client.advisor=DEBUG

将其添加到您的 application.propertiesapplication.yaml 文件中。

您可以使用以下构造函数自定义如何使用 SimpleLoggerAdvisor 记录来自 AdvisedRequest 和 ChatResponse 的数据:

SimpleLoggerAdvisor(
Function<AdvisedRequest, String> requestToString,
Function<ChatResponse, String> responseToString
)

使用示例:

javaCopySimpleLoggerAdvisor customLogger = new SimpleLoggerAdvisor(
request -> "Custom request: " + request.userText,
response -> "Custom response: " + response.getResult()
);

这使得您可以根据您的特定需求定制需要记录的信息。